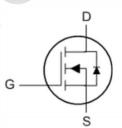
Description

150V N-CHANNEL ENHANCEMENT MODE POWER MOSFET

Features

- Device Rating V_{DS} = 150V, I_D = 434A
- $R_{DS(ON)} = 2.5 \text{m}\Omega \text{ (typ.)} @ V_{GS} = 10 \text{V}, I_D = 100 \text{A}$
- Proprietary High Density Trench Technology
- RoHS Compliant & Halogen-Free


Application

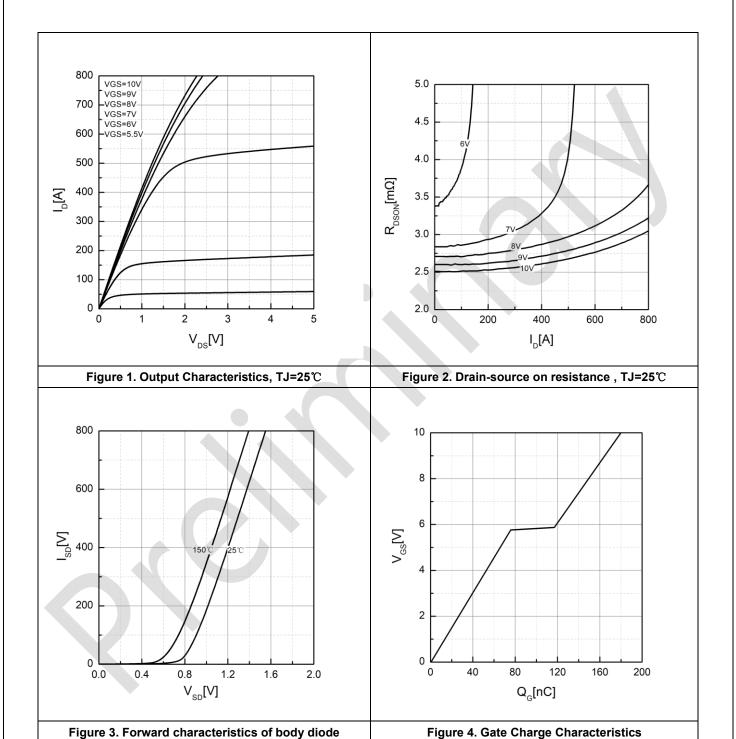
- Motor Driving
- BMS

Package

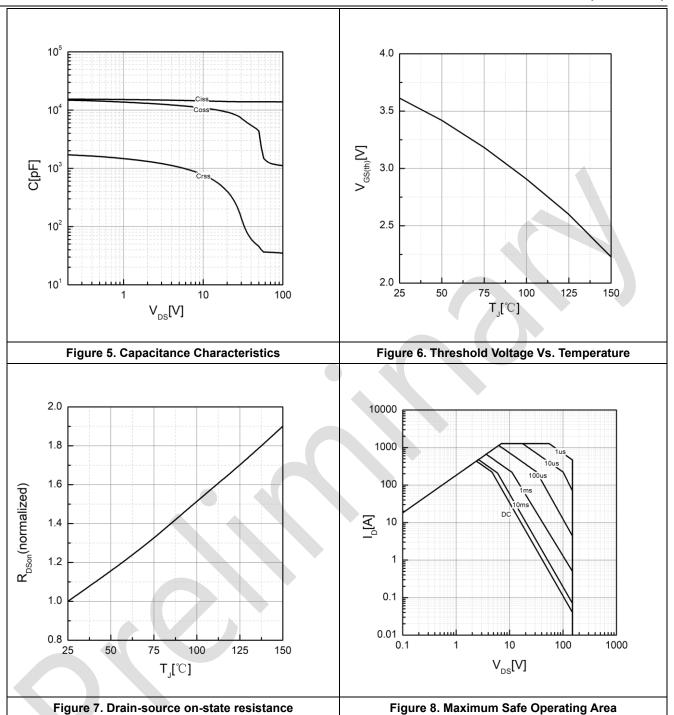
TO-247-3L JFG434N150A

Absolute Maximum Ratings Tc=25℃ unless otherwise specified

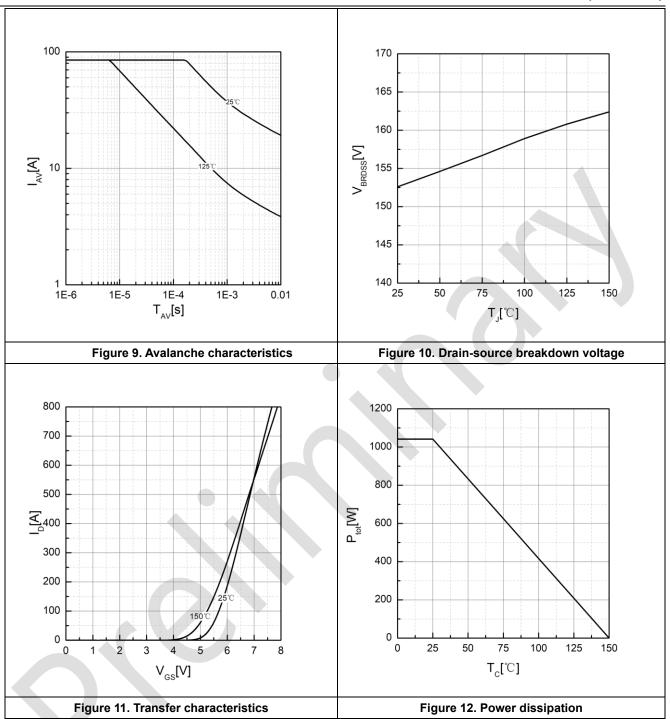
Symbol	Parameter		Max.	Units
V _{DS}	Drain-Source Voltage		150	V
V _{GS}	Gate-Source Voltage		± 20	V
ID	Continuous Drain Current, VGS @ 10V note1	T _C = 25°C	434	А
		T _C = 100°C	274	А
I _{DM}	Pulsed Drain Current note2		1272	А
P _D	Power Dissipation note4	T _C = 25°C	1041	W
	Power Dissipation	T _A = 25°C	6.25	W
Eas	Single Pulsed Avalanche Energy note3		1652	mJ
Rejc	Thermal Resistance, Junction to Case note1		0.12	°C/W
R _θ JA	Junction to Ambient (mounted on 1 inch square PCB)		20	°C/W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C

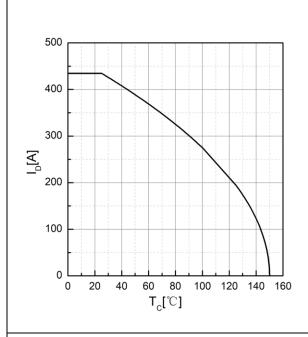

Electrical Characteristics T_C=25℃ unless otherwise specified

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units		
Off Characteristic								
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V$, $I_D = 250 \mu A$	150	-	-	V		
loss	Drain-Source Leakage Current	V _{DS} =150V, V _{GS} = 0V, T _C = 25°C	-	-	1	μΑ		
		V _{DS} =150V,V _{GS} = 0V, T _C = 55°C	-	-	10	μА		
Igss	Gate-Source Leakage Current	V _{DS} = 0V, V _{GS} = ±20V	-100		100	nA		
On Charac	teristics			1				
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3	-	4.6	V		
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10V, I _D =100A	-	2.5	2.9	mΩ		
g FS	Forward Transconductance	V _{DS} = 5V, I _D =100A	-	241	-	S		
Dynamic C	Characteristics							
Rg	Gate Resistance		\ -	1.3	-	Ω		
Ciss	Input Capacitance		-	13900	-	pF		
Coss	Output Capacitance	$V_{DS} = 75V$, $V_{GS} = 0V$,	-	1180	-	pF		
C _{rss}	Reverse Transfer Capacitance	f = 1MHz	-	36	-	pF		
Qg	Total Gate Charge	75)/ 1 4004	-	180	-	nC		
Q _{gs}	Gate-Source Charge	$V_{DS} = 75V, I_D = 100A,$	-	75	-	nC		
Q _{gd}	Gate-Drain("Miller") Charge	V _{GS} = 10V	-	41	-	nC		
Switching	Characteristics							
t _{d(on)}	Turn-On Delay Time		-	80	-	ns		
t _r	Turn-On Rise Time	$V_{DD} = 75V, I_D = 100A,$ $R_G = 1\Omega, V_{GS} = 10V$	-	40	-	ns		
t _{d(off)}	Turn-Off Delay Time		-	150	-	ns		
t _f	Turn-Off Fall Time		-	30	-	ns		
Source-Dr	ain Diode Characteristics and Maxim	um Ratings	I					
Is	Maximum Continuous Diode Forward	Current note1,5	-	-	434	Α		
I _{SM}	Maximum Pulsed Diode Forward Current note2,5		-	-	1272	Α		
t _{rr}	Reverse Recovery Time	T _J = 25°C, I _S = 100A, V _{GS} = 0V	-	150	-	ns		
Q _{rr}	Reverse Recovery Charge	di/dt = 150A/µs	-	1100	-	nC		
V _{SD} note2	Source to Drain Diode Forward Voltage	T _J = 25°C, I _S = 100A, V _{GS} = 0V	-	0.90	-	V		


Note

- 1.The data tested by surface mounted on one inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed, pulse width \leq 300us, duty cycle \leq 2%.
- 3.The EAS data shows Max. rating. The test condition is L=0.5mH, Ias= 85 A.
- 4.The power dissipation is limited by 150°C junction temperature.
- $5. The \ data \ is \ theoretically \ the \ same \ as \ I_D \ and \ I_{DM}, \ in \ real \ applications, \ should \ be \ limited \ by \ total \ power \ dissipation.$


Typical Performance Characteristics



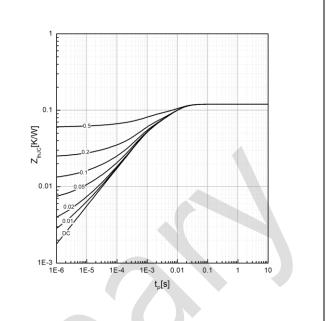


Figure 13. Drain current

Figure 14. Effective Transient Thermal Impedance

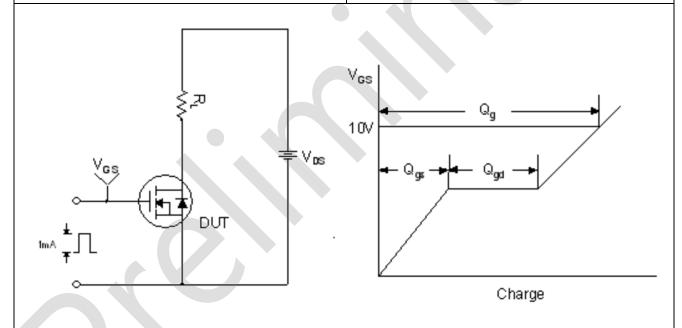


Figure 15. Gate Charge Test Circuit & Waveform

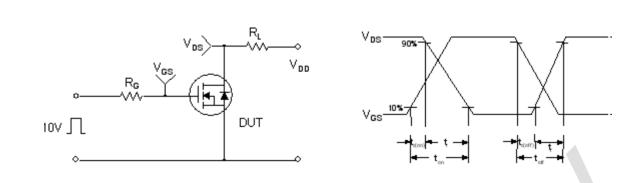
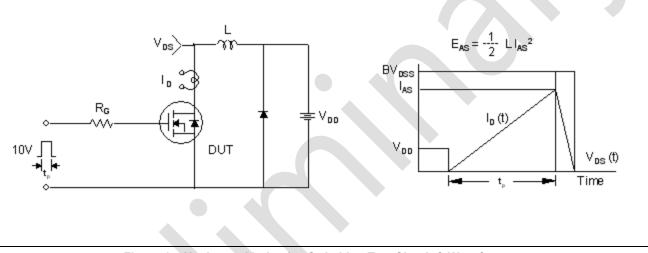
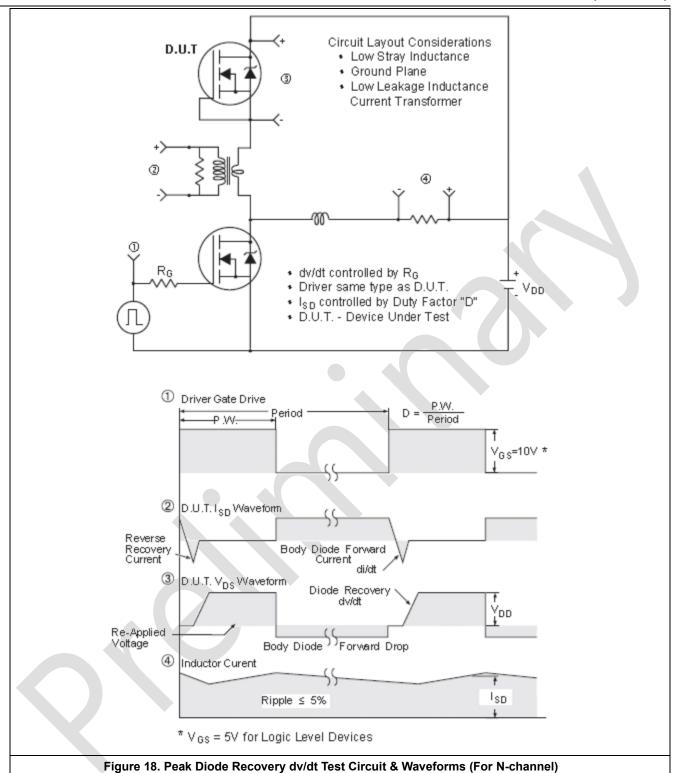
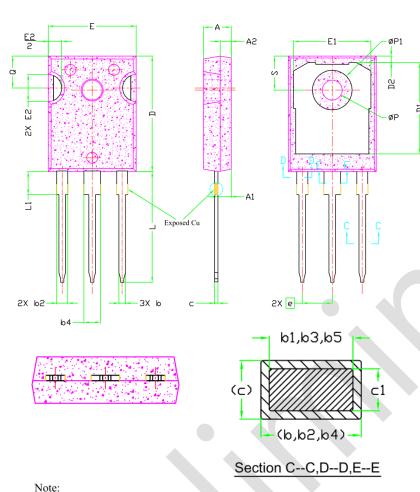


Figure 16. Resistive Switching Test Circuit & Waveforms


Figure 17. Unclamped Inductive Switching Test Circuit & Waveforms

Package outline

SYMBOL	DIMENSIONS			NOTES	
STINIBOL	MIN.	NOM.	MAX.	HOTES	
Α	4.83	5.02	5.21		
A1	2.29	2.41	2.55		
A2	1.50	2.00	2.49		
b	1.12	1.20	1.33		
b1	1.12	1.20	1.28		
b2	1.91	2.00	2.39	6	
b3	1.91	2.00	2.34		
b4	2.87	3.00	3.22	6, 8	
b5	2.87	3.00	3.18		
C	0.55	0.60	0.69	6	
c1	0.55	0.60	0.65		
D	20.80	20.95	21.10	4	
D1	16.25	16.55	17.65	5	
D2	0.51	1.19	1.35		
E	15.75	15.94	16.13	4	
E1	13.46	14.02	14.16	5	
E2	4.32	4.91	5.49	3	
е	5.44BSC				
L	19.81	20.07	20.32		
L1	4.10	4.19	4.40	6	
ØP	3.56	3.61	3.65	7	
ØP1 7.19REF.					
Q	5.39	5.79	6.20		
s	6.04	6.17	6.30		

- 1. Package Reference: JEDEC TO247, Variation AD.
- 2. All Dimensions Are In mm.
- 3. Slot Required, Notch May Be Rounded
- Dimension D & E Do Not Include Mold Flash. Mold Flash Shall Not Exceed 0.127mm Pre Side. These Dimensions Are Measured At The Outermost Extreme Of The Plastic Body
- At The Outermost Extreme Of The Plastic Body.

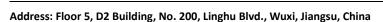
 5. Thermal Pad Contour Optional Within Dimension D1 & E1.
- 6. Lead Finish Uncontrolled In L1
- 7. ØP To Have A Draft Angle Of 1.5° (REF.) To The Top Of The Part With Hole Diameter Of 3.91mm (REF.).
- 8. Dimension "b2" And "b4" Does Not Include Dambar Protrusion. Allowable Dambar Protrusion Shall Be 0.10mm Total In Excess Of "b2" And "b4" Dimension At Maximum Material Condition.

Figure 19. TO247 Package outline

Disclaimer:

JUNSHINE does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

JUNSHINE reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.


JUNSHINE makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, JUNSHINE disclaims (1) any and all liability arising out of the application or use of any product, (2) any and all liability, including without limitation special, consequential or incidental damages, and (3) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

JUNSHINE products, except as expressly indicated in writing, are not designed for use in medical, life-saving, or life-sustaining applications, or for any other application in which the failure of the JUNSHINE product could result in personal injury or death. Customers using or selling JUNSHINE products not expressly indicated for use in such applications do so at their own risks.

Resale of JUNSHINE products with statements different from or beyond the parameters stated by JUNSHINE for that product or service voids all express or implied warrantees for the associated JUNSHINE product or service and is unfair and deceptive business practice. JUNSHINE is not responsible or liable for any such statements.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of JUNSHINE. Product names and markings noted herein may be trademarks of their respective owners.

JUNSHINE IS A FULLY OWNED SUBSIDIARY OF Wuxi XICHANWEIXIN Semiconductor Co., Ltd.

